Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography.

نویسندگان

  • Susan E Tsutakawa
  • Greg L Hura
  • Ken A Frankel
  • Priscilla K Cooper
  • John A Tainer
چکیده

In the last few years, SAXS of biological materials has been rapidly evolving and promises to move structural analysis to a new level. Recent innovations in SAXS data analysis allow ab initio shape predictions of proteins in solution. Furthermore, experimental scattering data can be compared to calculated scattering curves from the growing data base of solved structures and also identify aggregation and unfolded proteins. Combining SAXS results with atomic resolution structures enables detailed characterizations in solution of mass, radius, conformations, assembly, and shape changes associated with protein folding and functions. SAXS can efficiently reveal the spatial organization of protein domains, including domains missing from or disordered in known crystal structures, and establish cofactor or substrate-induced conformational changes. For flexible domains or unstructured regions that are not amenable for study by many other structural techniques, SAXS provides a unique technology. Here, we present SAXS shape predictions for PCNA that accurately predict a trimeric ring assembly and for a full-length DNA repair glycosylase with a large unstructured region. These new results in combination with illustrative published data show how SAXS combined with high resolution crystal structures efficiently establishes architectures, assemblies, conformations, and unstructured regions for proteins and protein complexes in solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural characterization of proteins and complexes using small-angle X-ray solution scattering.

Small-angle scattering of X-rays (SAXS) is an established method for the low-resolution structural characterization of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modeling, and allow one to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure...

متن کامل

A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.

Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible system...

متن کامل

How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective

While the crucial role of intrinsically disordered proteins (IDPs) in the cell cycle is now recognized, deciphering their molecular mode of action at the structural level still remains highly challenging and requires a combination of many biophysical approaches. Among them, small angle X-ray scattering (SAXS) has been extremely successful in the last decade and has become an indispensable techn...

متن کامل

Small-angle scattering studies of biological macromolecules in solution

Small-angle scattering (SAS) of x-rays and neutrons is a fundamental tool in the study of biological macromolecules. The major advantage of the method lies in its ability to provide structural information about partially or completely disordered systems. SAS allows one to study the structure of native particles in near physiological environments and to analyse structural changes in response to ...

متن کامل

Protein crystallography 1. Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering

We demonstrate tracking of protein structural changes with time-resolved wide-angle X-ray scattering (TR-WAXS) with nanosecond time resolution. We investigated the tertiary and quaternary conformational changes of human hemoglobin under nearly physiological conditions triggered by laser-induced ligand photolysis. We also report data on optically induced tertiary relaxations of myoglobin and ref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of structural biology

دوره 158 2  شماره 

صفحات  -

تاریخ انتشار 2007